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Abstract—Energy efficiency is critical for wireless sensor net-
works. The data gathering process must be carefully designed to
conserve energy and extend the network lifetime. For applications
where each sensor continuously monitors the environment and
periodically reports to a base station, a tree-based topology is
often used to collect data from sensor nodes. In this work, we
study the construction of a data gathering tree to maximize the
network lifetime, which is defined as the time until the first node
depletes its energy. The problem is shown to be NP-complete.
We design an algorithm which starts from an arbitrary tree and
iteratively reduces the load on bottleneck nodes (nodes likely to
soon deplete their energy due to high degree or low remaining
energy). We show that the algorithm terminates in polynomial
time and is provably near optimal. 1

I. I NTRODUCTION

Recent advances in micro-electronic fabrication have al-
lowed the integration of sensing, processing, and wireless com-
munication capabilities into low-cost and low-energy wireless
sensors [1], [2]. An important class of wireless sensor network
applications is the class of continuous monitoring applications.
These applications employ a large number of sensor nodes for
continuous sensing and data gathering. Each sensorperiodi-
cally produces a small amount of data and reports to a base
station. This application class includes many typical sensor
network applications such as habitat monitoring [3] and civil
structure maintenance [4].

The basic operation in such applications isdata gathering,
i.e., to collect sensing data from the sensor nodes and transmit
to a base station for processing. In this process, data aggrega-
tion can be used to fuse data from different sensors to eliminate
redundant transmissions. The critical issue in data gathering
is conserving sensor energy and maximizing sensor lifetime.
For example, in a sensor network for seismic monitoring or
radiation level control in a nuclear plant, the lifetime of each
sensor significantly impacts the quality of surveillance.

For continuous monitoring applications, a tree-based topol-
ogy is often used to gather and aggregate sensing data. The
tree is constructed after initial node deployment, and is rebuilt
upon significant topology changes. We study the problem of

1Yan Wu and Sonia Fahmy are with the Department of Computer Science,
Purdue University. Ness B. Shroff is with the departments of ECE and CSE,
The Ohio State University. This research has been sponsored in part by
NSF grants 0238294 and 0207728, an ARO MURI grant W911NF-07-10376
(SA08-03), an Indiana 21st century grant, and a Tellabs foundation fellowship.

tree construction formaximizing the network lifetime. Network
lifetime is defined as the time until the first node depletes its
energy. We prove that this problem is NP-complete, and too
computationally expensive to solve exactly. By exploiting the
unique structure of the problem, we obtain an algorithm which
starts from an arbitrary tree and iteratively reduces the load
on bottleneck nodes, i.e., nodes likely to soon deplete their
energy due to either high degree or low remaining energy. We
show that the algorithm terminates in polynomial time and is
provably “near optimal” (i.e., close to optimal).

The remainder of this paper is organized as follows. Sec-
tion II reviews related work on data gathering and aggregation.
Section III describes the system model and formulates the
problem. Section IV gives our tree construction algorithm
and discusses implementation issues. Simulation results are
presented in Section V, and Section VI concludes the paper.

II. RELATED WORK

The problem of efficient data gathering and aggregation
in a sensor network has been extensively investigated in
the literature. Krishnamachariet. al. [5] argue that a data-
centric approach is preferable to address-centric approaches
under the many-to-one communication pattern (multiple sensor
nodes report their data to a single base station). In directed
diffusion [6], a network of nodes coordinate to perform dis-
tributed sensing tasks. This achieves significant energy savings
when intermediate nodes aggregate their responses to queries.
Kalpakis et. al. [7] model data gathering as a network flow
problem, and derive an efficient schedule to extend system
lifetime. Houet. al.[8] study rate allocation in sensor networks
under a lifetime requirement.

For continuous monitoring applications with a periodic
traffic pattern, atree-based topologyis often adopted because
of its simplicity [9]–[11]. Compared to an arbitrary network
topology, a tree-based topology saves the cost of maintaining
a routing table at each node, which can be computationally
expensive for sensor nodes with limited resources. A num-
ber of studies have investigated tree construction for data
gathering [12]–[15]. Goelet. al. [12] study the problem of
constructing efficient trees to send aggregated information to a
sink. The goal is to reduce the total amount of data transmitted.
They propose a randomized algorithm that approximates the
optimal tree. Enachescuet. al. [13] consider a grid of sensors,
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and propose a simple randomized tree construction scheme
that achieves a constant factor approximation to the optimal
tree. Thepvilojanaponget. al.[14] present a data gathering pro-
tocol that efficiently collects data while maintaining constant
local state, and making only local decisions. Khan and Pan-
durangan [16] propose a distributed algorithm that constructs
an approximate minimum spanning tree (MST) in arbitrary
networks. In contrast to these approaches, we are motivated
by applications with strictcoveragerequirements. For these
applications, minimizing the total energy consumption may be
insufficient, since some nodes may deplete their energy faster
than others and cause loss of coverage.

III. SYSTEM MODEL AND PROBLEM DEFINITION

Consider a sensor network withN nodes (v1, v2, . . . vN )
and one base stationv0. The nodes monitor the environment
and periodically report to the base station. Time is divided into
epochs, and each sensor node generates oneB-bit message per
epoch. The messages from all the sensors need to be collected
at each epoch and sent to the base station for processing.
The nodes are powered by batteries and each sensorvi has a
battery with finite, non-replenishable energyE(i). The energy
valuesE(i) of different sensor nodes can be different, for
reasons such as heterogeneous sensor nodes, non-uniform node
energy consumption, or redeployment of nodes. As with many
practical systems [17], [18], the base station is connected to
an unlimited power supply, henceE(0) = ∞. The amount of
energy required to send/receive one bit of data isαt/αr.

A. Assumptions

We make the following assumptions about our system:
(1) Connectivity: We assume that the sensor nodes and

the base station form a connected graph, i.e., there is a path
from any node to any other node in the graph. This can be
achieved by setting the transmission power level to be above
the critical threshold [19]–[21], which ensures that the network
is connected with probability one as the number of nodes
in the network goes to infinity. For simplicity, we do not
consider dynamic adjustment of the transmission power levels,
and assume that all nodes transmit at the same fixed power
level.

(2) Energy expenditure: Measurements show that among
all the sensor node components, the radio consumes the most
significant amount of energy. In Section IV, we will show that
the computational complexity of our scheduling algorithm is
very low. Therefore, in this work, we only account for energy
consumption of the radio.

(3) Data aggregation: We adopt a simple data aggregation
model as in previous work [5]–[7], [22]. We assume that
an intermediate sensor can aggregate multiple incomingB-
bit messages, together with its own message, into a single
outgoing message of sizeB bits. This models applications
where we want updates of the type min, max, mean, and sum
(e.g., event counts).

(4) Orthogonal transmissions and sleep/wake scheduling:
Measurements show that for short range radio communica-
tions in sensor networks, a significant amount of energy is

wasted due to overhearing, collision, and idle listening. To
conserve energy, we assume that the system adopts a channel
allocation scheme such that transmissions do not interfere
with each other. Such orthogonality can be achieved via joint
frequency/code allocation and time slot assignment. In [23],
we have given an example solution for a cluster hierarchy
topology. Similar arguments can be made for the tree topology
considered in this paper. Further, because the traffic is periodic,
we assume that a sensor node puts the radio into sleep
mode during idle times, and turns it on only during message
transmission/reception.

B. The maximum-lifetime tree problem

We consider a connected networkG of N nodes. Each
node monitors the environment and periodically generates a
small amount of data. To gather the data from the sensor
nodes, we need to construct a tree-based topology after node
(re)deployment. For critical applications like seismic moni-
toring or radiation level control in a nuclear plant, we need
to both maintain complete coverage and save redeployment
cost. This requires that all the nodes remain up for as long as
possible. To this end, we formulate the following optimization
problem.

For any networkG, there exist multiple possible data
gathering trees. For example, Fig. 1 shows two data gathering
trees for the same network. Each treeT has a lifetimeL(T ),
whereL(T ) is defined as the time until the first node depletes
its energy2. Our goal is to find the tree that maximizes the
network lifetime:

(A) maxL(T )
such thatT ∈ A(G),

whereA(G) is the set of data gathering trees forG.

BS

v1

v5 v5

v1

BS

v2

v3 v4

v2

v3 v4

v2

v3 v4

Fig. 1. Two data gathering trees for the same network

To obtain an explicit form of the above problem, we must
characterize the energy dissipation for each sensor node in a
given treeT . Let C(T, i) be the number of children for node
vi in T , andD(T, i) be the degree of nodevi in T . During
an epoch, nodevi needs to:

• receive oneB-bit message from each child, and
• aggregate the received messages with its own message

into a singleB-bit message, and transmit this aggregate
message to its parent.

2Here, we assume that we will lose the corresponding coverage if a node
dies, i.e., there are no redundant nodes. If the network has redundancy, we
can consider all nodes covering the same area (e.g., nodes near the same bird
nest) as a single node whose initial energy equals the sum of energy of all
the relevant nodes, and the following results still apply.
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Hence, in each epoch, the energy consumption of nodevi is
αrBC(T, i) + αtB, and its lifetime (in epochs) is

L(T, i) =
E(i)

αrBC(T, i) + αtB
.

The network lifetime is the time until the first node dies, i.e.,

L(T ) = min
i=1...N

L(T, i) = min
i=1...N

E(i)

αrBC(T, i) + αtB
(1)

Because the base stationv0 is connected to a power supply,
its lifetime is infinite and can also be written as

L(T, 0) =
E(0)

αrBC(T, 0) + αtB
.

So we can includev0 in Equation (1) as

L(T ) = min
i=0...N

E(i)

αrBC(T, i) + αtB
. (2)

SinceT is a tree, we have

C(T, i) = D(T, i) − 1 (3)

for all nodes except the base station. Combining Equation (2)
with Equation (3) and extracting the constantαrB from the
denominator, we can write Problem (A) as

(B) max min
i=0...N

E(i)

D(T, i) + c
such thatT ∈ A(G).

where c = αt

αr

− 1 is a non-negative constant because the
transmission power is larger than the reception power.

In Problem (B), the goal is to maximize the minimum
of E(i)

D(T,i)+c
, i = 0 . . .N . This is a load balancing problem.

Intuitively, for this kind of problem, a good solution would
be that nodes with larger capabilities (largeE(i)) should
hold more responsibilities by serving more child nodes (large
D(T, i)). In other words, we want to construct a tree such that
the degree of a node is “proportional” to its energy.

IV. SOLUTION AND IMPLEMENTATION

The difficulty in solving Problem (B) is illustrated by the
following proposition, which shows that it is NP-complete.

Proposition 1: Problem (B) is NP-complete.
Proof: Clearly, the problem is in NP, since we can verify in
polynomial time if a candidate solution is a tree and achieves
the lifetime constraint.

To show it is NP-hard, we reduce from the Hamiltonian
path problem, which is known to be NP-complete [24]. The
reduction algorithm takes as input an instance of the Hamilto-
nian path problem. Given a graphG, it constructs an auxiliary
graphG′ in the following manner. For each vertexi in G, add
a vertexi′, then draw an edge betweeni and i′ (Fig. 2).

Then inG′, set the energy as follows:E(1′) = ∞, E(1) =
E(2) = . . . = E(N) = E(2′) = . . . = E(N ′) = 1. In
this manner,G′ becomes an instance of Problem (B). The
construction ofG′ and setting the energy values can be easily
done in polynomial time. To complete the proof, we show that
G has a Hamiltonian path if and only ifG′ has a tree whose
lifetime is greater than or equal to13+c

.

1

2
3

4

G

1

2
3

4

1'

2'

3'

4'

G’
(a) Reducing HAM-PATH to Problem
(B)

1

2
3

4

1

2
3

4

1'

2'

3'

4'

T T’
(b) The correspondence betweenT
and T ′

Fig. 2. Problem (B) is NP-complete

SupposeG has a Hamiltonian pathT . ConstructT ′ in G′

by adding vertices1′, 2′, . . .N ′ and edges(1, 1′), . . . (N, N ′)
as depicted in Fig. 2. Clearly,T ′ is connected and acyclic,
thusT ′ is a tree. Further, sinceT is a Hamiltonian path, the
maximal degree inT is no larger than2. But T ′ is constructed
by adding one edge to each vertex inT , so the maximal degree
in T ′ is no larger than3. Therefore, the lifetime ofT ′ is

L(T ′) = min
E(i)

D(T ′, i) + c
≥

1

3 + c
.

Similarly, if G′ has a spanning treeT ′ with L(T ′) ≥ 1
3+c

,
then we haveD(T ′, i) ≤ 3, i = 1 . . .N . Otherwise, if
D(T ′, j) > 3 for somej, 1 ≤ j ≤ N , then

L(T ′) ≤ L(T ′, j) <
E(j)

D(T ′, j) + c
≤

1

4 + c
,

which is contradictory.
We further observe that inT ′, vertices1′, 2′ . . .N ′ are all

leaves. We constructT by removing1′, 2′ . . . N ′ and the cor-
responding edges(1, 1′), . . . (N, N ′) from T ′. T is still a tree
and it spansG. Since inT ′ we haveD(T ′, i) ≤ 3, i = 1 . . .N ,
it is easy to see that inT , D(T, i) ≤ 2, i = 1 . . .N . Thus,T is
a spanning tree with maximal degree no larger than 2, which
is exactly a Hamiltonian path.

Since Problem (B) is NP-complete, we next try to find
an approximate solution. However, in the current form of
Problem (B), the variableD(T, i) is in the denominator and
is hard to tune. Hence, we transform the problem into an
equivalent form. Letr(T, i) = D(T,i)+c

E(i) , i.e., r(T, i) is the
inverse lifetimefor nodei in treeT . Correspondingly, define
the inverse lifetime of a treeT asr(T ) = max

i=0...N
r(T, i). We

write Problem (B) as:
(C) min

T∈A(G)
max

i=0...N
r(T, i),

i.e., maximizing the minimal lifetime is equivalent to mini-
mizing the maximalinverse lifetime. Note that inr(T, i), the
variableD(T, i) is in the numerator, while the denominator is
the constantE(i) which does not change during the operation
of the algorithm. Note that Problem (C) is an equivalent
formulation to Problem (A). In the remainder of the paper,
we will study Problem (C), and we refer to the minimum
maximal inverse lifetime asr∗.

A. Two building blocks of the algorithm

Considerable work has been done on the Minimum Degree
Spanning Tree (MDST) problem, i.e., finding a spanning tree
whose maximal degree is the minimum among all spanning
trees. Problem (C) can be viewed as a generalization of
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the MDST problem, where the capacity of a node (E(i))
needs to be considered in the tree construction. Frer and
Raghavachari [25] studied the MDST problem and proposed
an approximation algorithm. Our solution utilizes hints from
their approach. Essentially, our solution starts from an arbitrary
tree, and iteratively makes “improvements” by reducing the
degree of thebottleneck nodes, i.e., nodes with a large inverse
lifetime (or short lifetime), at each step. Upon termination, we
will bound r∗ from below, and show that the resulting tree has
inverse lifetime close to the lower bound. In this section, we
describe two building blocks of our algorithm: (1) the notion
of “an improvement,” and (2) the technique to boundr∗ from
below.

1) The notion of an improvement:Given a treeT and an
arbitrary ǫ > 0, let k = ⌈ r(T )

ǫ
⌉, i.e., (k − 1)ǫ < r(T ) ≤ kǫ.

We classify the nodes into three disjoint subsets:

• V1 = {vi : (k−1)ǫ < r(T, i) ≤ kǫ}, i.e.,V1 contains the
bottleneck nodes that are our “target” in each step.

• V2 = {vi : (k − 1)ǫ− 1
E(i) < r(T, i) ≤ (k − 1)ǫ}. These

nodes are “close” to becoming bottleneck nodes in the
sense that they will become bottlenecks if their degree
increases by one. We should not increase the degree of
these nodes in the algorithm.

• V3 = V − V1 − V2, i.e., all the remaining nodes.
These nodes are “safe” nodes as they will not become
bottlenecks even if the degree is increased by one.

Consider an edge(u, v) that is not inT . A unique cycleC will
be generated when we add(u, v) to T . If there is a bottleneck
nodew ∈ V1 in C, while bothu andv are inV3 (“safe nodes”),
then we can add(u, v) to T and delete one of the edges inC
incident onw. This will reduce the degree of the bottleneck
nodew by one. We call this modification animprovement, and
we say thatw benefitsfrom (u, v). We will use this method
as a building block to increase the network lifetime in our
algorithm.

In the above example, if eitheru or v or both are inV2, then
the above modification will turnu or v or both into bottleneck
node(s). Thus, while reducing the degree for one bottleneck
node, we produce additional bottleneck(s). This is undesirable
and we say thatw is blockedfrom (u, v) by u (or v or both).
A node isblocking if it is in V2.

We illustrate the notion of improvement using an example.
Fig. 3(a) shows a tree, where solid lines correspond to edges
in the tree, and dotted lines correspond to edges not in the
tree. For simplicity, we set the initial energy for all nodes in
this example to be 1, sor(T, i) = D(T,i)+c

E(i) = D(T, i)+ c for
all nodes except the base station.

Let ǫ = 1. According to the above definition,w (the dark
grey node) is a bottleneck node,v2 (the light grey node)
is a blocking node and all other nodes are safe. We can
add (u, v1) and delete(w, u). This is an improvement as
it reduces the degree of the bottleneck nodew. In contrast,
adding(u, v2) and deleting(w, u) do not prolong the network
lifetime, because doing so produces another bottleneck node
v2 while reducing the degree ofw.

(a) The tree

(b) Adding (u, v1) and delet-
ing (w, u) is an improvement

(c) Adding (u, v2) and delet-
ing (w, u) is not an improve-
ment

Fig. 3. The notion of improvement

2) Method for boundingr∗ from below: We note that given
a treeT , if we can find a subset of nodesS that satisfies the
following property:

the components produced by removingS from T are also
disconnected inG,
then in any spanning treeX , we can connect these components
only throughS. This is because there is no edge between
these components inG. Hence, inX any edge external to
these components must be incident on some vertex inS (see
Fig. 4).

(a) The graph

(b) T and S (c) An arbitrary treeX

Fig. 4. Boundingr∗ from below

Now let us assume that we have already found such anS,
and study the components generated by removingS from T .
We can count

∑
i∈S D(T, i) edges incident onS. SinceT is a

tree, at most|S| − 1 of these counted edges are withinS and
counted twice. Hence, the number of generated components
is:

O ≥
∑

i∈S

D(T, i) − (|S| − 1) + 1 − |S|.

In an arbitrary spanning treeX , we need to connect theseO
components and the vertices inS. This requires

O + |S| − 1 ≥
∑

i∈S

D(T, i) − (|S| − 1) (4)
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edges. According to the discussion above, all these edges must
be incident on some vertex inS. Thus, by Equation (4),∑

i∈S D(X, i) ≥
∑

i∈S D(T, i) − |S| + 1 and the inverse
lifetime for X is

r(X) = max
i=0...N

r(X, i) ≥ max
i∈S

r(X, i) = max
i∈S

D(X, i) + c

E(i)

≥

∑
i∈S(D(X, i) + c)∑

i∈S E(i)
≥

∑
i∈S(D(T, i) + c) − |S| + 1∑

i∈S E(i)

≥ min
i∈S

r(T, i) −
|S| − 1∑
i∈S E(i)

. (5)

Since X is an arbitrary spanning tree, Equation (5) holds
for any spanning tree including the optimal one. Hence,
Equation (5) gives a lower bound for the minimum maximal
inverse lifetimer∗, which is equivalent to an upper-bound for
the maximum minimal lifetime. Further, we observe that if
(T, S) is chosen such that

min
i∈S

r(T, i) ≈ r(T ),

i.e., r(T, i) for all i ∈ S are close tor(T ), then Equation (5)
implies thatT is a good approximation to the optimal tree.
Specifically, we have the following lemma.

Lemma 1:For a treeT , if there is a subsetS such that
(1) the components produced by removingS from T are also
disconnected inG, and (2)S consists of nodes exclusively
from V1 and V2, then r(T ) ≤ r∗ + 2

Em

+ ǫ, whereEm =
min

i=0...N
E(i).

Proof: SinceS consists of nodes exclusively fromV1 andV2,
we haver(T, i) > (k − 1)ǫ − 1

E(i) , ∀i ∈ S, but (k − 1)ǫ <

r(T ) ≤ kǫ, thus

r(T, i) > r(T ) − ǫ −
1

E(i)
≥ r(T ) − ǫ −

1

Em

, ∀i ∈ S. (6)

Combined with Equation (5), for any treeX , we have

r(X) ≥ min
i∈S

r(T, i) −
|S| − 1∑
i∈S E(i)

> r(T ) − ǫ −
1

Em

−
|S| − 1∑
i∈S E(i)

> r(T ) − ǫ −
2

Em

.

Since X is arbitrary, this holds for any tree. Hence,r∗ >
r(T ) − ǫ − 2

Em

.

B. The approximation algorithm

The approximation algorithm starts from an arbitrary tree,
and iteratively makes improvements as described in Sec-
tion IV-A1, by reducing the degree of the bottleneck nodes
(V1) in each iteration. Upon termination, we will show that the
resulting tree includesS, which consists of nodes exclusively
from V1 and V2. Hence by Lemma 1, the resulting tree is a
good approximation to the optimal tree.

We first describe the operations in a single iteration of the
algorithm.

1) A single iteration:Given a treeT , we remove the nodes
in V1 andV2, which will generate a forest with several compo-
nents. If there are no edges between these components inG,
we terminate the algorithm. In this situation, we have found
anS(= V1 +V2) which consists of nodes exclusively fromV1

andV2. By Lemma 1,T is already a good approximation to
the optimal tree.

In case that there are some edges between these components
in G, let (u, v) be an edge between two components. We
consider the cycle that would be generated had(u, v) been
added toT . There are two cases:

• If the cycle contains a bottleneck nodew, then we add
(u, v) to T and remove one edge incident onw. This is
an improvement because bothu andv are inV3 and non-
blocking. Thus, we have successfully reduced the degree
of a bottleneck node within this iteration. We move on
to the next iteration with the updatedT as the input.

• If there is no bottleneck node in the cycle, the situation
becomes complex and we discuss it in detail below.

If there is no bottleneck node in the cycle, then it must
contain some node(s) fromV2. We merge these nodes along
with all the components on the cycle into a single component.
We call this newly generated component acompositecompo-
nent, to differentiate it from thebasic components originally
generated after removingV1 and V2 from T . As shown in
Fig. 5(a),C1 andC2 are two basic components generated by
removingV1 andV2 from T , and(u1, u2) is an edge between
them. Nodeu is in V2. By adding(u1, u2) to T , we get a cycle
u1 → u2 → v → u1. Sinceu ∈ V2, there is no bottleneck
node in this cycle. We thus mergeu and all components on
the cycle (C1 andC2 in this example) into a single composite
componentC4.

After this merge operation, we go back and check if there
are edges between the components (basic or composite). If
there are no such edges, the algorithm terminates. Otherwise,
we choose an edge between two components. We consider the
corresponding cycle that would be generated and repeat the
above process. Since the graph is finite, eventually we will
either find anS which consists of nodes exclusively fromV1

andV2, or we will find a bottleneck node in the cycle.
After finding a bottleneck node, however, we may not be

able to easily reduce its degree if composite components
are involved. This is because, due to the merging of the
components, some composite components may contain nodes
in V2. If the chosen edge happens to be between one or two
nodes fromV2, then we cannot simply add it, because that
would generate another bottleneck node(s). For example, in
Fig. 5(a),C1, C2 andC3 are basic components, henceu1, u2

andv are all in V3 by construction of the algorithm.u ∈ V2

(the light grey node) is in the cycle produced had(u1, u2)
been added, andC4 is the composite component generated by
mergingC1, C2 and u. A bottleneck nodew ∈ V1 (the light
grey node) is in the cycle produced if(u, v) was added. If we
add (u, v) and delete one edge incident onw, thenu would
become a bottleneck node.
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The above problem can be solved in the following manner.
Sinceu is in the cycle produced had(u1, u2) been added, and
both u1 and u2 are in V3, we can add(u1, u2) and remove
one edge incident onu (e.g.,(u, u1)). This will decrease the
degree ofu by one and make it non-blocking. Then, we add
(u, v) and remove one edge incident onw, which reduces
the degree for bottleneck nodew. In other words, we first
“unblock” u within its own componentC4, then use edge(u, v)
to make an improvement as described in Section IV-A1. This
procedure can be recursively applied ifC1, C2 are composite
components andu1, u2 are blocking, since a blocking node
can be made non-blockingwithin its own component. The
following proposition formalizes this idea.

(a) Nodeu blocks w from (u, v) (b) Unblock the blocking node

Fig. 5. Unblock a blocking node

Proposition 2: A blocking node merged into a component
can be made non-blocking by applying improvements within
this component.
Proof: Let u1 be a node in componentC1, andu2 be a node
in componentC2. Let u be a blocking node that is merged
into componentC when edge(u1, u2) is checked, along with
C1 andC2. We need to show thatu can be made non-blocking
within C. There are two cases:

• If C1 and C2 are both basic components, then bothu1

andu2 are non-blocking. Thus, we can add(u1, u2) and
remove one edge incident onu, makingu non-blocking.
The improvement is withinC.

• If C1 or C2 or both are composite components, thenu1 or
u2 or both could be blocking. Under this situation, if we
can makeu1 non-blocking by applying improvements in
C1, and makeu2 non-blocking by applying improvements
in C2, then we apply the above improvement to “unblock”
u. This is becauseC1 and C2 are disjoint from the
construction of the algorithm, hence improvements within
one component do not interfere with those in another.
Thus, we checku1, C1 andu2, C2. We recursively repeat
this checking process and eventually we will get to the
basic components, in which all nodes are non-blocking.
We then reverse the process and unblock the nodes in
a bottom-up manner, untilu1 and u2 are unblocked.
Then, we unblocku by adding(u1, u2) and removing
one edge incident onu. Note that all the improvements
are withinC.

Based upon this, in a single iteration, we will reduce the
degree for some bottleneck node, otherwise we will find anS
and terminate the algorithm.

2) The iterative approximation algorithm:We can now give
the approximation algorithm. The algorithm starts from an

arbitrary tree (line 1), and proceeds with the iterations. Lines
2-14 correspond to an iteration. Finally, it outputs the solution
in line 15.

Algorithm 1 Approximation Algorithm
Input: A connected networkG and a positive parameterǫ
Output: A data gathering tree ofG that approximates the
maximum-lifetime tree

1: Find a spanning treeT of G.
2: loop
3: Let k = ⌈ r(T )

ǫ
⌉.

4: Remove V1 and V2 from T . This will generate a
forest with several components. LetF be the set of
components in the forest.

5: while there is an edge(u, v) connecting two different
components ofF and no bottleneck nodes are on the
cycle generated if(u, v) was added toT do

6: Merge the nodes and the components on the cycle
into a single component.

7: end while
8: if there is a bottleneck node in the cyclethen
9: Follow the procedure in Proposition 2 and find a

sequence of improvements to reduce the degree of
the bottleneck node.

10: Make the improvements and updateT .
11: else
12: Break out of the loop.{no edge connecting two

different components ofF .}
13: end if
14: end loop
15: Output the treeT as the solution.

The following proposition gives the quality of the approxi-
mation algorithm.

Proposition 3: (1) The algorithm terminates in finite time,
and after termination, the treeT which it finds hasr(T ) ≤
r∗ + 2

Em

+ ǫ;
(2) If there is a polynomial time algorithm which finds a tree

T ′ with r(T ′) < r∗ + 1
Em

for all graphs and energy settings,
thenP = NP .
Proof:(1) We first show that the algorithm terminates in
finite time. Clearly, each iteration will finish in finite time,
so it suffices to show the algorithm terminates after a finite
number of iterations. We show this by contradiction. Suppose
the algorithm never stops. In each iteration, we will reduce
the degree for some nodei with r(T, i) ∈ ((k − 1)ǫ, kǫ].
Because the network is finite, all nodes will have an inverse
lifetime smaller than(k − 1)ǫ within a finite number of
iterations. Repeating this process, within a finite number of
iterations, all nodes will have inverse lifetime smaller than
(k − 2)ǫ, (k − 3)ǫ . . .. However, by definition, the inverse
lifetime cannot be smaller thanr∗. Thus, the algorithm must
terminate in finite time.

The algorithm terminates when there is no edge between
the components inF , i.e., there existsS consisting of nodes
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exclusively from V1 and V2. Thus, by Lemma 1, we have
r(T ) ≤ r∗ + 2

Em

+ ǫ.
(2) Similar to Proposition 1, we reduce from the Hamilto-

nian path problem. Given a graphG, we want to decide if
it contains a Hamiltonian path. To this end, we construct an
auxiliary graphG′ as in Fig. 2 and adopt the same setting of
energy values.

We show that the proposition is true by contradiction.
Suppose that there is a polynomial algorithm which finds a
tree T ′ with r(T ′) < r∗ + 1

Em

for all graphs and energy
settings. Running this algorithm onG′ will generate a tree
T ′ with r(T ′) < r∗ + 1. We will show thatG contains a
Hamiltonian path if and only ifr(T ′) < 4 + c.

SupposeG has a Hamiltonian pathP . We constructP ′ in G′

by adding vertices1′, 2′, . . .N ′ and edges(1, 1′), . . . (N, N ′).
Clearly,P ′ is connected and acyclic, thusT ′ is a tree. Further,
since P is a Hamiltonian path, the maximal degree inP
is no larger than2. But P ′ is constructed by adding one
edge to each vertex inP , so that the maximal degree inP ′

is no larger than3. Therefore, the inverse lifetime ofP ′ is
r(P ′) = max D(P ′,i)+c

E(i) ≤ 3 + c. SinceP ′ is one particular
data gathering tree forG′, for G′ we haver∗ ≤ r(P ′) ≤ 3+c.
Thus,r(T ′) < r∗ + 1 ≤ 4 + c.

Similarly, if r(T ′) < 4 + c, then we haveD(T ′, i) ≤ 3, i =
1 . . .N . Otherwise, ifD(T ′, j) > 3 for somej, 1 ≤ j ≤ N ,
thenr(T ′) ≥ r(T ′, j) ≥ 4 + c.

Further, in T ′, vertices 1′, 2′ . . . N ′ are all leaves. We
constructT by removing1′, 2′ . . .N ′ and corresponding edges
(1, 1′), . . . (N, N ′) from T ′. T is still a tree and it spansG.
BecauseD(T ′, i) ≤ 3, i = 1 . . .N , then in T , D(T, i) ≤
2, i = 1 . . .N . Thus,T is spanning tree with maximal degree
no larger than 2, which is exactly a Hamiltonian path forG.

Thus,G contains a Hamiltonian path if and only ifr(T ′) <
4 + c. This means for any graphG, we can decide if it
contains a Hamiltonian path by running the algorithm on the
constructed auxiliary graphG′ and checking ifr(T ′) < 4+ c.
This can be done in polynomial time. Hence, we can decide
if a graph contains a Hamiltonian path in polynomial time. If
this is true,P = NP .

We analyze the computational complexity of our algorithm.
For any bottleneck nodei, we have(k−1)ǫ < D(T,i)+c

E(i) ≤ kǫ.
Hence,(k − 1)ǫE(i) < D(T, i) + c. For a tree, the sum of
degrees of the vertices is2(N − 1). So we have

(k − 1)ǫ
∑

i∈V1

E(i) <
∑

i∈V1

(D(T, i) + c) ≤ 2(N − 1) + cN

< (2 + c)N. (7)

Therefore,

ǫ
∑

i∈V1

E(i) <
(2 + c)N

k − 1
, (8)

and

(k − 1)ǫEm|V1| ≤ (k − 1)ǫ
∑

i∈V1

E(i) < (2 + c)N

=⇒ |V1| <
(2 + c)N

(k − 1)ǫEm

. (9)

In each iteration, the degree of some bottleneck nodei will
decrease by one, so its inverse lifetime will decrease by1

E(i) .
After ⌈ ǫ

1
E(i)

⌉ iterations, its inverse lifetime will be lower than

(k − 1)ǫ. For all the bottleneck nodes to have their inverse
lifetime decreased to lower than(k − 1)ǫ, we need a total of

∑

i∈V1

⌈
ǫ
1

E(i)

⌉ ≤
∑

i∈V1

(
ǫ
1

E(i)

+ 1) = ǫ
∑

i∈V1

E(i) + |V1|

<
(2 + c)N

k − 1
(1 +

1

ǫEm

). (10)

iterations, where the last “<” comes from Equations (8)
and (9).

Since the inverse lifetime cannot exceedN+c
Em

, k can be
no larger than⌈N+c

Emǫ
⌉. Summing up the right hand side

of Equation (10) overk, the algorithm will terminate in
O((1 + 1

ǫEm

)N log ( N
Emǫ

)) iterations. Each iteration can be
completed in O(Mα(M, N)) time as in [25] using Tar-
jan’s disjoint set union-find algorithm [26], whereM is the
number of edges andα(·) is the inverse Ackerman func-
tion. Therefore, the complexity of the entire algorithm is
O((1 + 1

ǫEm

)MNα(M, N) log ( N
Emǫ

)).
We note that the parameterǫ appears both in the approxi-

mation range (as given in Proposition 3) and in the algorithm
complexity. It affects the trade-off between the approximation
quality and the computation time. Ifǫ is chosen to be small,
the approximation quality will be good, but the computation
time would be large. On the other hand, choosing a largeǫ will
reduce the computation time, but degrade the approximation
quality. We will quantitatively study the impact ofǫ via
simulations later in Section V-B and Section V-C.

C. Implementation

In many sensor systems [17], [18], the base station is a
Pentium-level PC, which has a high computational capability
and sufficient memory compared to the sensor nodes. Further,
the base station is often connected to an unlimited power
supply. Hence, it is preferable to take advantage of the
computing capabilities of the base station and let it perform
the tree computation3.

In order for the base station to perform the tree computation,
it first needs to obtain the neighborhood information from the
nodes, so that it can construct the network graph. For this
purpose, we adopt the following protocol after the network
is deployed. The base station is assigned level 0, and it
initiates the process of gathering neighborhood information
by broadcasting a beacon. This beacon contains the identity
and the level of its sender (in this case the base station). The
1-hop neighbors of the base station receive this beacon, and
assign themselves level 1. They also set the base station as
their parent so that they will report to it in the future. After
this, they broadcast a beacon containing their own identity and

3Note that thiscentralized scheme is effective because the base station
is much more powerful than the sensor nodes. If the base station has
similar performance to the sensor nodes, a distributed implementation is more
desirable.
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level. The 2-hop neighbors of the base station will receive one
or more such beacons, set their level to be 2 and choose a 1-
hop neighbor (of the base station) as the parent to report to.
This process continues and eventually every node is assigned
a level and finds a parent to report to. To avoid flooding in this
process, once a node is assigned a level and finds a parent,
it will ignore such beacons for a sufficiently long period of
time to ensure the algorithm has terminated. In this manner,
a hierarchical structure is established, with the root being the
base station.

Following the completion of this process, each node will
report the identity of its neighbors to the base station. The
transmission is hierarchical: a node reports to its parent, then
the parent combines its own information with the information
from its children and passes it along onto its own parent.
To guarantee that all the information is received by the base
station, reliable data delivery mechanisms like hop-by-hop
acknowledgments can be used. The base station can construct
the graph from the received information. It then computes the
data gathering tree using Algorithm 1, and informs each node
of its parent.

To combat the fragility of tree topologies, we must recon-
struct the tree whenever a node depletes its energy or fails
(e.g., due to physical damage). This computation of the tree is
only done infrequently, i.e., we compute the tree only once
after network deployment or topology change. Hence, for
continuous monitoring applications where nodes are mostly
static, the additional message overhead is insignificant in the
long run.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our approx-
imation algorithm via simulations. Unless otherwise specified,
we assume that100 nodes are uniformly dispersed in a 100 m
× 100 m field4. The base station is located at the center
of the field, i.e., its coordinate is(50, 50). Each node is
assigned a randomly-generated initial energy level between
1 and 10 Joules (J). There is a link between two nodes if
and only if the distance between them is less than or equal to
the transmission rangeR. Each node generatesB = 2 bytes
of data per minute. From previous measurements [6], the
transmission power is about two times the reception power,
so we setc = 1. All the simulation results are averaged over
100 runs, with each run using a different randomly generated
topology. Table I summarizes the simulation parameters and
other system constants.

A. Lifetime performance

To illustrate the lifetime performance of our approximation
algorithm, we compare our scheme with the initial (random)
tree that we described in Section IV-C. In the random scheme,
all 1-hop nodes choose the base station as the parent node.
An n-hop (n ≥ 2) node will choose ann − 1-hop node as

4This topology model is for illustration purposes only. Our scheme works
with general topology models.

TABLE I
SIMULATION PARAMETERS AND SYSTEM CONSTANTS

Number of nodes 100
Field 100 × 100
Base station location (50, 50)
Initial energy (J) U(1, 10)
B (bytes per min.) 2
Data rate (kbps) 19.2
c = αt

αr
− 1 1

R (transmission range) 20
Algorithm parameterǫ 0.5
Number of runs 100

its parent. If there are multiplen − 1-hop nodes within its
transmission range, itrandomlypicks one of them.

For each run, we compute the lifetime ratio between our
scheme and the random scheme. We show the histogram
over 100 runs in Fig. 6(a). It can be seen that our scheme
significantly outperforms the random scheme. For all runs, the
lifetime achieved by our scheme is at least30% larger than the
random scheme, and for most runs, the lifetime of our scheme
is three times larger. This confirms that it is necessary to adopt
an intelligent tree construction algorithm, and validates the
effectiveness of our scheme.

We also compare our scheme with the optimal solution. To
do this, we enumerate all the trees for a given graph, find the
one with maximum lifetime and compare with our scheme.
Because of the high complexity of the enumeration, we set
the number of nodes to be 10, the area to be10× 10 and the
transmission range to be 6.5. We show the histogram of the
lifetime ratios in Fig. 6(b). It can be seen that the performance
of our scheme is close to the optimal solution. For all runs,
the lifetime achieved by our scheme is at least70% that of
the optimal solution.
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(a) Histogram of the lifetime ratios be-
tween our scheme and the random scheme
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(b) Histogram of the lifetime ratios be-
tween our scheme and the optimal scheme

Fig. 6. Comparing our scheme with two schemes

B. Impact ofǫ on lifetime

Fig. 7 depicts the impact ofǫ on network lifetime. For
each randomly generated topology, we vary the value ofǫ,
execute our algorithm, and compute the lifetime. For each
value of ǫ, we compute the average lifetime over 100 runs,
and show the result in Fig. 7. We observe that the trend is
that network lifetime achieved by our algorithm decreases as
ǫ increases. This is consistent with the analytical result given
by Proposition 3.
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Fig. 7. Impact ofǫ on lifetime

C. Computation time

We measured the computation time of our algorithm. Our
platform is a personal computer (PC) with a Pentium 4, 3.4
GHz processor and 1 GB RAM, which runs Linux version
2.6.12.6 and GNU gcc v2.7. We find that the computation
time decreases asǫ increases, and the maximum computation
time is less than a few seconds for 100-node networks.
Even when we increase the number of nodes to 1000, the
computation takes no longer than 20 seconds to complete.
This is significantly lower than the optimal computation that
we compared with, which even for only 12 nodes took 239
minutes (it took about 10 minutes for 11 nodes; for 13 nodes,
we aborted it before completion after two days). This shows
that our algorithm incurs little computational burden and can
be used for large networks.

VI. CONCLUSIONS

In this work, we have studied the construction of a data
gathering tree to maximize the network lifetime of a wireless
sensor network. The problem turns out to be NP-complete and
hard to solve exactly. However, by investigating its structure,
we give a polynomial time algorithm, which isprovablyclose
to optimal. Simulations show that our scheme successfully bal-
ances the load and significantly extends the network lifetime.
Further, our scheme has a low computational burden, which
is important for on-line implementation.

Our definition of network lifetime mainly applies to appli-
cation scenarios with strict coverage requirements. We plan to
extend our framework to consider other definitions of network
lifetime, e.g., time until network partitioning. Further, our
implementation of the algorithm leverages a centralized base
station that exists in many sensor systems. For applications
where a centralized base station is unavailable, a distributed
approach is needed. We plan to investigate this distributed
implementation of the tree construction algorithm in our future
work.
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